Pseudonymous Software Development and Strong Distribution

V. Alex Brennen
codepoet@dublin.ie
What is Pseudonymous Development?
- Tied to a cyberspace identity
- Not tied to a meatspace identity

What is Strong Distribution?
- A distribution model which is cryptographically strong
- Software and Communications protected through the use of strong public key cryptography
- Most commonly PGP or x509
Why do we need It?

- Patent System has long been broken
- Developers may now face imprisonment
 - DMCA (Reverse Engineering)
 - DRM
 - SkipJack
- Developers may now face lawsuits
 - Trade Secrets
 - DMCA
 - RIAA
 - MPAA
 - Unintended Usage
• Other Sources of Chilling Effects
 – Employer Mission Confusion
 • Public University or Private Incubator?
 • Researcher or Entrepreneur?
 • 9-5 Employee or Slave Property?
 – American Entitlement Liability
 • Grand Theft Auto
 • Columbine High School
• Two adversaries
 – The US Gov't
 • The US Gov't is evil, ever present, and ever monitoring
 – You can't win against them
 – There are no secrets from them
 – Corporations
 • Limited by their own property
 • Limited by borders
 • Attempt to get the Gov't to act for them, but it's difficult
• Choose Just Not To Contribute
 – Don't write any code
 – Send small patches and ask not to be named

• Try and Contribute in Secret
 – Separate your on-line identity
 – Contribute under a pseudonym
 – But what if you're discovered and exposed?
 – The subject of this talk!
http://www.freestateproject.org/
• Core Components Necessary
 – Key Server Infrastructure
 • A few different networks
 – Anonymous Email Infrastructure
 • Mixmaster anonymous remailers
 – Anonymous Posting Infrastructure
 • email to usenet gateways
 – Onion Routing Downloading Infrastructure
 • Tor
• Create an Identity
 – openPGP key with no contact information
 – Integrate it with a Web of Trust
• Step 1: Write the Software
• Step 2: Sign A Software Archive
• Step 3: Post Your Public Key
• Step 4: Distribute Software over Pseudonymous Network
• Step 5: Publish a Method of Communicating With You
• Step 6: Rinse and Repeat
• Step 1: Write The Software
 – That's the hard part
• Step 2: Sign a Software Archive
 - `gpg -a -o prog.tar.bz2.sig --detach-sig prog.tar.bz2`
 - Provides Protection on the Server
 - Provides Protection in Transit
 - Provides Protection for the Customer
• Step 3: Post Your Public Key
 – Many Keyserver Networks
 • MIT Keyserver
 • subkeys
 • CryptNET
 – Single Web Site
 – p2p Network
 – Newsgroup
• Step 4: Distribute Software over Pseudonymous Network
 – Tor
 – email to usenet
 – Mirrors to pick it up
 – Major distribution sites
 • SourceForge
• Step 5: Publish a Method of Communicating With You
 – alt.anonymous
 – Steganography
 – Avoid Personal Email
 – Email Lists with Archives OK
• Step 6: Rinse and Repeat
 – New releases made the same way
 – Safely use method for years
 – Alternative method available if a system gets shut down
 – Sneaker net leaks
The patch life cycle

- User gets software and public key
- Writes patch
 - Encrypts with public key
 - Posts cyphertext in public place
- Developer Discovers Cyphertext
 - Decrypt
 - Processes patch
 - Signed security advisory
 - New release w/ fix
• Egoboo
 – Developer asks Potential Employer to Encrypt Secret with project public key and provide cyphertext
 – Developer decrypts secret
 – Message Identifying Developer Signed with Project Keypair
- Arbitrary Statements about Arbitrary Content
 - A hash representation of anything can be digitally signed
 - Signatures can be circulated in detached form
 - Pseudonymous Security Audits
 - Non-Pseudonymous Security Audits
• Project Forking
 – Easy as Generating New Keypair
 – Signature on Keypair Lend Credibility
 • Old project keypair signature
 • Developer signature
• Compromise
 – Identity
 – Project Keypair
 – Developer Keypair
 – Keys in Web of Trust
 – Keypair Revocation is Important
 – Possession of Keypair proof of involvement
• Breaking a Keypair with Factoring
 – Government can do it

\[O \left(\exp \left(\left(\frac{64}{9} n \right)^{\frac{1}{3}} \left(\log n \right)^{\frac{2}{3}} \right) \right) \]
• Ring Signatures
 – Someone in a Group
 • Signer Hard to Identifiable
 – Secret Leaking Protocols Can Be Instructive
The Strong Distribution HOWTO
http://cryptnet.net/fdp/crypto/strong_distro.html

Guerrilla Software Development HOWTO
http://cryptnet.net/fdp/crypto/guerrilla-devl.html

The Keysigning Party HOWTO
http://cryptnet.net/fdp/crypto/gpg-party.html
V. Alex Brennen
codepoet@dublin.ie